Search Results

Documents authored by Roll, Fabian


Document
Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris-Rips Filtrations

Authors: Ulrich Bauer and Fabian Roll

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Motivated by computational aspects of persistent homology for Vietoris–Rips filtrations, we generalize a result of Eliyahu Rips on the contractibility of Vietoris–Rips complexes of geodesic spaces for a suitable parameter depending on the hyperbolicity of the space. We consider the notion of geodesic defect to extend this result to general metric spaces in a way that is also compatible with the filtration. We further show that for finite tree metrics the Vietoris–Rips complexes collapse to their corresponding subforests. We relate our result to modern computational methods by showing that these collapses are induced by the apparent pairs gradient, which is used as an algorithmic optimization in Ripser, explaining its particularly strong performance on tree-like metric data.

Cite as

Ulrich Bauer and Fabian Roll. Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris-Rips Filtrations. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bauer_et_al:LIPIcs.SoCG.2022.15,
  author =	{Bauer, Ulrich and Roll, Fabian},
  title =	{{Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris-Rips Filtrations}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.15},
  URN =		{urn:nbn:de:0030-drops-160237},
  doi =		{10.4230/LIPIcs.SoCG.2022.15},
  annote =	{Keywords: Vietoris–Rips complexes, persistent homology, discrete Morse theory, apparent pairs, hyperbolicity, geodesic defect, Ripser}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail